Что такое мочевой пузырь у рыб

Мочеполовая система рыб представлена органами мочевыделительной и репродуктивной систем. Органы этих двух систем тесно связаны между собой, поэтому их часто описывают вместе, хотя выделительные и половые каналы у рыб разделены.

К данным органам относятся: почки, половые железы (гонады), выводные протоки и наружные мочевыводящие и половые органы.

Почки у рыб обычно парные, состоящие из тёмно-красных тел лентовидной формы. Почки расположены почти вдоль всей полости тела и плотно прижаты к позвоночнику. Внутри почки находится мочевой канал, пронизанный капиллярами. Почка отфильтровывает из крови продукты распада, затем они попадают в этот канал, а кровь выходит из почек уже очищенная.

Кроме этого почки поддерживают и физико-химическую устойчивость организма: осмотическое давление и кислотно-щелочное, ионное равновесие.

Почки морских рыб задерживают воду; пресноводных – наоборот, откачивают ее из организма. Поэтому объем мочи у пресноводных рыб в 10 раз больше чем у морских. Колюшка сооружает место для нереста из растений, укрепляя их с помощью почечного секрета, быстро затвердевающего в воде.

Продукты распада из мочевого канала попадают в мочевой пузырь и выводятся наружу через мочеточник. Однако у некоторых рыб мочеточник выходит в анальное отверстие, из которого моча уже и выводится наружу. Кроме того, встречаются и виды рыб, у которых мочеточник выполняет одновременно и функцию семяпровода при размножении.

Оплодотворение у рыб может быть как внутренним (при помощи копулятивных органов), так и внешним: выметывание икры.

Гонады (семенники и яичники) рыб – это обычно парные лентовидные или мешковидные образования, подвешенные на складках брюшины: брыжейке, в полости тела рыбы.

По форме, гонады могут быть разными, например, у некоторых видов встречаются полностью слитые в одну железу (например, окунь), ассиметричные парные гонады. Встречаются и виды с одиночными (непарными) гонадами (карась серебряный).

Половой орган самок рыб – яичники. В них созревает и скапливается икра.

Яичники рыбы сливаются с яйцеводом (мюллеровым каналом), который выводит икру наружу. Некоторые виды (корюшковые, лососёвые, угрёвые) имеют незамкнутые яичники, и созревшие икринки попадают в полость тела, после чего через специальные каналы выводятся из организма. У живородящих рыб молодь развивается в яичниках.

Половой орган самцов рыб – семенник. В нем созревает и накапливается сперма. Наружу она выходит через семяпровод (вольфов канал) и половое отверстие (у самцов щуки, лососей), а у некоторых видов и через мочеполовое отверстие (у самцов большинства костистых рыб).

Строение и функции половых протоков, как и гонад, у разных видов рыб может быть разным.

По мере роста и полового созревания рыбы меняются размеры и внешний вид гонад.

Существует шкала зрелости гонад, пользуясь которой по внешним признакам (размерам и внешнему виду), устанавливают стадию созревания половых продуктов рыбы. Это очень важно при промышленном, декоративном и научном разведении рыбы.

Существуют и рыбы с принципиально иным строением мочеполовой системы – это например рыбы-гермафродиты (морской окунь).

6111

Источник

Анисимова И.М., Лавровский В.В.

“Ихтиология”

Из-во Высшая школа. 1983 г.

ГЛАВА I

СТРОЕНИЕ И НЕКОТОРЫЕ ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ РЫБ

ВЫДЕЛИТЕЛЬНАЯ СИСТЕМА И ОСМОРЕГУЛЯЦИЯ

В отличие от высших позвоночных, имеющих компактную тазовую почку (метанефрос), рыбы обладают более примитивной туловищной почкой (мезонефрос), а их зародыши – предпочкой (пронефрос). У некоторых видов (бычок, атерина, бельдюга, кефаль) предпочка в том или ином виде выполняет выделительную функцию и у взрослых особей; у большинства же взрослых рыб функционирующей почкой становится мезонефрос.

Почки – парные, вытянутые вдоль полости тела темно-красные образования, плотно прилегающие к позвоночнику, над плавательным пузырем (рис. 22). В почке выделяют передний отдел (головная почка), средний и задний.

Артериальная кровь поступает в почки по почечным артериям, венозная по воротным венам почек.

Рис. 22. Почка форели (по Строганову, 1962):

1 – верхняя полая вена, 2 – выносящие почечные вены, 3 – мочеточник, 4 – мочевой пузырь

Морфофизиологическим элементом почки является извитой почечный мочевой каналец, один конец которого расширяется в мальпигиево тельце, а другой отходит к мочеточнику. Железистые клетки стенок секретируют продукты азотистого распада (мочевину) , которые попадают в просвет канальцев. Здесь же, в стенках канальцев, происходит обратное всасывание воды, сахаров, витаминов из фильтрата мальпигиевых телец.

Мальпигиево тельце – клубочек артериальных капилляров, охватываемый расширенными стенками канальца, – образует боуменову капсулу. У примитивных форм (акулы, скаты, осетровые) перед капсулой от канальца отходит мерцательная воронка. Мальпигиев клубочек служит аппаратом фильтрации жидких продуктов обмена. В фильтрат попадают как продукты обмена, так и важные для организма вещества. Стенки почечных канальцев пронизаны капиллярами воротных вен и сосудов из боуменовых капсул.

Очищенная кровь возвращается в сосудистую систему почек (почечную вену), а отфильтрованные из крови продукты обмена и мочевина выводятся через каналец в мочеточник. Мочеточники изливаются в мочевой пузырь (мочевой синус), а затем моча выводится наруж 91; у самцов большинства костистых рыб через мочеполовое отверстие позади ануса, а у самок костистых и самцов лососевых, сельдей, щуки некоторых других – через анальное отверстие. У акул и скатов мочеточник открывается в клоаку.

В процессах выделения и водно-солевого обмена кроме почек принимают участие кожа, жаберный эпителий, пищеварительная система (см. ниже).

Жизненная среда рыб – морские и пресные воды – всегда имеет большее или меньшее количество солей, поэтому осморегуляция является важнейшим условием жизнедеятельности рыб.

Осмотическое давление водных животных создается давлением их полостных жидкостей, давлением крови и соков тела. Определяющая роль в этом процессе принадлежит водно-солевому обмену.

Каждая клетка тела имеет оболочку: она полупроницаема, т. е. по-разному проницаема для воды и солей (пропускает воду и солеизбирательно). Водно-солевой обмен клеток определяется в первую очередь осмотическим давлением крови и клеток.

По уровню осмотического давления внутренней среды по отношению к окружающей воде рыбы образуют несколько групп: у миксин полостные жидкости изотоничны окружающей среде; у акул и скатов концентрация солей в жидкостях тела и осмотическое давление немного выше, чем в морской воде, или почти равно ему (достигается за счет разницы солевого состава крови и морской воды и за счет мочевины); у костистых рыб – и морских и пресноводных (как и у более высоко организованных позвоночных) – осмотическое давление внутри тела не равно осмотическому давлению окружающей воды. У пресноводных рыб оно выше, у морских рыб (как и у других позвоночных) ниже, чем в окружающей среде (табл. 2).

Таблица 2

Величина депрессии крови для крупных групп рыб (по Строганову, 1962)

Группа рыб. Депрессия Д°Кровь. Депрессия Д° Внешняя среда. Среднее осмотическое давление, Па. Кровь Среднее осмотическое давление, Па

Внешняя среда.

Костистые: морские. 0,73. 1,90-2,30. 8,9 • 105. 25,1 • 105.

Костистые: пресноводные. 0,52. 0,02-0,03. 6,4 • 105. 0,3 • 105.

Если в организме поддерживается определённый уровень осмотического давления жидкостей тела, то условия жизнедеятельности клеток становятся более стабильными и организм меньше зависит от колебаний внешней среды.

Настоящие рыбы обладают этим свойством – сохранять относительное постоянство осмотического давления крови и лимфы, т. е. внутренней среды; поэтому они относятся к гомойосмотическим организмам (от греч. ‛гомойос‛ – однородный) .

Но у разных групп рыб эта независимость осмотического давления выражается и достигается по-разному,

У морских костистых рыб общее количество солей в крови значительно ниже, чем в морской воде, давление внутренней среды меньше давления внешней, т. е. их кровь гипотонична по отношению к морской воде. Ниже приведены величины депрессии крови рыб (по Строганову, 1962):

Вид рыбы. Депрессия среды Д°.

Морские:

треска балтийская – 0,77

камбала морская – 0,70

скумбрия – 0,73

форель радужная – 0,52

налим – 0,48

Пресноводные:

карп –

0,42

линь – 0,49

щука – 0,52

Проходные:

угорь в море – 0,82

в реке – 0,63

севрюга в море – 0,64

в реке – 0,44

У пресноводных рыб количество солей в крови выше, чем в пресной воде. Давление внутренней среды больше давления внешней, их кровь гипертонична.

Поддержание солевого состава крови и давления ее на нужном уровне обусловливается деятельностью почек, особых клеток стенок почечных канальцев (выделение мочевины), жаберных лепестков (диффузия аммиака, выделение хлоридов), кожных покровов, кишечника, печени.

У морских и пресноводных рыб осморегуляция совершается разными способами (специфическая деятельность почек, различная проницаемость покровов для мочевины, солей и воды, различная деятельность жабр в морской и пресной воде).

У пресноводных рыб (с гипертонической кровью), находящихся в гипотонической среде, разница осмотического давления внутри и вне организма приводит к тому, что вода извне непрерывно поступает внутрь организма – через жабры, кожу и ротовую полость (рис. 23).

Рис. 23. Механизмы осморегуляции у костистых рыб

А – пресноводные; Б – морские (по Строганову, 1962)

Во избежание чрезмерного обводнения, для сохранения водно-солевого состава и уровня осмотического давления возникает необходимость вывода из организма лишней воды и одновременного удержания солей. В связи с этим у пресноводных рыб мощное развитие получают почки. Количество мальпигиевых клубочков и почечных канальцев у них велико; мочи они выделяют гораздо больше, чем близкие морские виды. Данные о количестве мочи, выделяемой рыбами в сутки, представлены ниже (по Строганову, 1962):

Вид рыбы. Количество мочи, мл/кг массы тела

Пресноводные:

карп – 50-120

форель – 60- 106

сом карликовый – 154 – 326

Морские:

бычок –

3-23

морской черт – 18

Проходные:

угорь в пресной воде –

60-150

в море – 2-4

Утрата солей с мочой, экскрементами и через кожу восполняется у пресноводных рыб за счет получения их с пищей благодаря специализированной деятельности жабр (жабры поглощают из пресной воды ионы Na и Сl) и поглощением солей в почечных канальцах.

Морские костистые рыбы (с гипотонической кровью), находящиеся в гипертонической среде, постоянно теряют воду – через кожу, жабры, с мочой, экскрементами. Предотвращение обезвоживания организма и сохранение осмотического давления на нужном уровне (т. е. ниже, чем в морской воде) достигаются тем, что они пьют морскую воду, которая всасывается через стенки желудка и кишечника, а избыток солей выделяется кишечником и жабрами.

Угорь и морской бычок-подкаменщик в морской воде ежедневно пьют 50-200 см3 воды на 1 кг массы тела. В условиях опыта при пре прекращении подачи воды через рот (закрытый пробкой) рыба теряла 12%- 14% массы и на 3-4-й день погибала.

Морские рыбы выделяют очень мало мочи: в почках у них немного мальпигиевых клубочков, у некоторых их нет совсем и есть только почечные канальцы. У них уменьшена проницаемость кожи для солей, жабры выделяют наружу ионы Na и Сl. Железистые клетки стенок канальцев увеличивают выделение мочевины и других прод091;ктов азотисm0;ого обмена.

Таким образом, у непроходных рыб – только морских или только пресноводных – действует какой-нибудь один, специфический для них способ осморегуляции.

Эвригалинные организмы (т. е. выдерживающие значительное колебание солености), в частности проходные рыбы, проводят часть жизни в море, а часть – в пресной воде. При переходе из одной среды в другую, например во время нерестовых миграций, они переносят большие колебания солености.

Это возможно благодаря тому, что проходные рыбы могут переходить с одного способа осморегуляции на другой. В морской воде у них действует такая же система осморегуляции, как у морских рыб, в пресной – как у пресноводных, так что их кровь в морской воде гипотонична, а в пресной – гипертонична.

Их почки, кожа и жабры могут функционировать двояко: почки имеют почечные клубочки с почечными канальцами, как у пресноводных рыб, и только почечные канальцы, как у морских. Жабры снабжены специализированными клетками (так называемые клетки Кейс-Вильмера), способными поглощать и выделять Сl и Na (тогда как у морских или пресноводных рыб они действуют только в одном направлении). Изменяется и количество таких клеток. При переходе из пресной воды в море в жабрах японского угря возрастает количество клеток, выделяющих хлориды. У речной миноги при подъеме из моря в реки количество мочи, выделяемой в течение суток, увеличивается до 45% по сравнению с массой тела.

У некоторых проходных рыб большую роль в регуляции осмотического давления играет слизь, выделяемая кожей.

Передний отдел почки – головная почка – выполняет не выделительную, а кроветворную функцию: в него не заходит воротная вена почек, а в составляющей ее лимфоидной ткани образуются красные и белые кровяные клетки и разрушаются отжившие эритроциты.

Как и селезёнка, почки чутко отражают состояние рыбы, уменьшаясь в объёме при недостатке кислорода в воде и увеличиваясь при замедлении обмена (у карпа – во время зимовки, когда ослабляется деятельность кровеносной системы), в случае острых заболеваний и т. д.

Очень своеобразна дополнительная функция почек у колюшки, строящей для нереста гнездо из кусочков растений: перед нерестом почки увеличиваются, в стенках почечных канальцев вырабатывается большое количество слизи, которая в воде быстро затвердевает и скрепляет гнездо.

НазадОглавлениеДалее

Источник

Мочево́й пузы́рь, мочеви́к (лат. vesica urinaria, др.-греч. κύστις) – непарный полый орган выделительной системы позвоночных животных, расположенный в малом тазу.

Мочевой пузырь выполняет функцию резервуара мочи, из которого она выводится наружу; иными словами, он служит для накопления оттекающей из почек мочи и периодического её выведения через мочеиспускательный канал, регулируемого с помощью детрузора.

Мочевой пузырь позвоночных

Мочевой пузырь имеется у большинства позвоночных животных[1]. Среди рыб он отсутствует у хрящевых, но присутствует у большинства костных, у которых его образуют мочеточники, сливающиеся друг с другом перед выходом наружу[2].

Имеется мочевой пузырь у большинства современных земноводных (тех, которые относятся к отряду Бесхвостые) и у части пресмыкающихся (черепахи и бо́льшая часть лепидозавров). У них мочеточники впадают не в мочевой пузырь, а в клоаку, и в неё же открывается мочевой пузырь, но самостоятельным отверстием. У крокодилов, змей и некоторых ящериц мочевой пузырь недоразвит, а у птиц он отсутствует[3][4].

Напротив, у млекопитающих мочевой пузырь имеется, причём мочеточники впадают в него (исключение составляют однопроходные: у них мочеточники открываются в мочеполовой синус, и уже из него моча попадает в мочевой пузырь)[5][6].

Мочевой пузырь человека

Анатомия

Мочевой пузырь мужчины (слева) и женщины (справа), в продольном разрезе органов таза. Показаны стрелками

Мочевой пузырь у человека один, он располагается в малом тазу за лобком позади лонного сочленения. В зависимости от количества содержащейся в нём мочи мочевой пузырь может растягиваться и сжиматься. Вместимость мочевого пузыря составляет примерно 0,5 л[7]. По другим данным, у мужчин в норме она составляет 350-750 мл, у женщин – 250-550 мл[8]. Человек ощущает позыв к мочеиспусканию, когда объём мочи в мочевом пузыре достигает 150-200 мл; если последний наполняется быстро, то позывы к мочеиспусканию следуют чаще, поскольку при быстром растягивании гладких мышц, образующих стенку мочевого пузыря, происходит более сильное раздражение присутствующих в этих мышцах барорецепторов[9].

Верхушка мочевого пузыря (лат. apex vesicae) сверху переходит в срединную пупочную связку[en] (остаток урахуса). Нижняя часть пузыря, суживаясь, образует шейку мочевого пузыря (лат. cervix vesicae), а последняя переходит в мочеиспускательный канал. Дно мочевого пузыря (лат. fundus vesicae) обращено вниз и кзади, а между верхушкой и дном располагается тело мочевого пузыря (лат. corpus vesicae). Когда пузырь наполняется мочой, его верхушка, приподнимаясь над лонным сочленением, касается передней брюшной стенки. У наполненного мочевого пузыря толщина растянутой стенки не превышает 2-3 мм, в то время как после опорожнения пузыря толщина стенки возрастает до 12-15 мм[10].

В средней части мочевого пузыря в него сзади под углом впадают два мочеточника. Благодаря тому, что они входят в мочевой пузырь в косом направлении, возникает своеобразный клапанный аппарат, который во время мочеиспускания, когда в мочевом пузыре повышается давление мочи, препятствует обратному затеканию мочи в мочеточники[9]. На слизистой оболочке основания пузыря выделяют мочепузырный треугольник (лат. trigonum vesicae), вершинами которого служат устья мочеточников и внутреннее отверстие мочеиспускательного канала. В области этого отверстия располагается толстая круговая мышца – внутренний сфинктер (лат. musculus sphincter urethae); он предотвращает непроизвольное мочеиспускание[11].

Гистология

Слизистая оболочка (лат. tunica mucosa) мочевого пузыря состоит из переходного эпителия (уротелия) и собственной пластинки (лат. lamina propria); последняя образована рыхлой соединительной тканью, которую пронизывают мелкие кровеносные сосуды. Когда слизистая оболочка пузыря не растянута (или растянута умеренно), она имеет множество складок, которые, однако, отсутствуют в области мочепузырного треугольника[12].

Уротелий, в зависимости от локализации, содержит от трёх до шести слоёв клеток. Поверхностный слой уротелия образован крупными зонтичными клетками с эозинофильной цитоплазмой, клетки других слоёв значительно меньше по размерам[13].

Мышечная оболочка мочевого пузыря (детрузор) образована тремя слоями, состоящими из пересекающихся пучков гладкомышечных клеток: продольным наружным, круговым средним и сетевидным внутренним. Волокна всех этих слоёв проходят к шейке мочевого пузыря (так называют заднюю часть мочеиспускательного канала), где переплетаются с поперечно-полосатыми мышцами промежности[12][13].

Иннервация

Иннервация мочевого пузыря обеспечивается симпатическими и парасимпатическими, а также спинальными нервами. В стенках его обнаружено также большое число нервных ганглиев и рассеянных нейронов вегетативной нервной системы, а также рецепторных нервных окончаний[12].

Хирургическая реабилитация при цистэктомии

При ряде заболеваний (рак мочевого пузыря, распространённые злокачественные опухоли дистальных отделов толстой кишки и внутренних половых органов и др.) выполняют операцию цистэктомии[en] – хирургического удаления мочевого пузыря. Для организации оттока мочи из организма пациента после такой операции применяют несколько способов[14][15].

Простейший из них – установка внешней стомы, т. e. искусственного отверстия, обеспечивающего вывод мочи из мочеточников наружу, где она стекает в пластиковый мешочек, закреплённый на теле пациента; накапливаемую в мешочке мочу периодически сливают[16].

Альтернативой является хирургическое создание искусственного резервуара для мочи из секции толстой или подвздошной кишки пациента, помещаемого обычно в место расположения удалённого мочевого пузыря. Существует несколько методик создания такого резервуара; опорожнение его при этом происходит либо через мочеиспускательный канал, либо через кишечную стому. Данное решение имеет ряд побочных эффектов; большинства из них удаётся избежать, обеспечивая удовлетворительное качество жизни больного, в случае применения метода Широкорада – предложенного В. И. Широкорадом метода, который предусматривает хирургическое создание изолированного илеоцекального угла с разворотом в малый таз и обеспечивает выведение мочи через кишечник[14][17].

В 2006 году группа исследователей во главе с профессором Э. Аталой впервые осуществила успешную пересадку пациентам искусственного мочевого пузыря[en], выращенного в лаборатории методами тканевой инженерии из их собственных клеток (данное обстоятельство исключает реакцию отторжения)[18]. Дальнейшее совершенствование предложенной ими технологии открывает новые перспективы хирургической реабилитации пациентов, перенёсших цистэктомию, хотя и спустя десять лет после публикации результатов этой группы работы в данной области не вышли за пределы лабораторий[19].

См. также

  • Рак мочевого пузыря
  • Цистит
  • Гиперактивность мочевого пузыря
  • Недержание мочи у женщин

Примечания

  1. ↑ Константинов, Наумов, Шаталова, 2012, с. 38.
  2. ↑ Дзержинский, Васильев, Малахов, 2014, с. 125, 139.
  3. ↑ Константинов, Наумов, Шаталова, 2012, с. 131, 167, 232.
  4. ↑ Дзержинский, Васильев, Малахов, 2014, с. 212, 326.
  5. ↑ Константинов, Наумов, Шаталова, 2012, с. 339.
  6. ↑ Дзержинский, Васильев, Малахов, 2014, с. 406.
  7. ↑ Сапин и Билич, т. 2, 2009, с. 175.
  8. ↑ Manski, Dirk. Urodynamik (Harnblasendruckmessung): Zystometrie. // Website www.urologielehrbuch.de (23.10.2015). Проверено 23 июня 2016.
  9. ↑ 1 2 Агаджанян Н. А., Смирнов В. М. Нормальная физиология. – М.: Медицинское информационное агентство, 2009. – 520 с. – ISBN 978-5-9986-0001-2. – С. 387.
  10. ↑ Сапин и Билич, т. 2, 2009, с. 175-176.
  11. ↑ Сапин и Билич, т. 2, 2009, с. 177.
  12. ↑ 1 2 3 Гистология, цитология и эмбриология, 2004, с. 693.
  13. ↑ 1 2 MacLennan G. T. Hinman’s Atlas of Urosurgical Anatomy. 2nd ed. – Philadelphia: Elsevier Health Sciences, 2012. – xi + 368 p. – ISBN 978-1-4160-4089-7. – P. 240-241.
  14. ↑ 1 2 Широкорад В. И., Минаев И. И., Дёмин Д. И., Долгих В. Т. Метод хирургической реабилитации больных после комбинированных операций на органах малого таза // Сибирский научный медицинский журнал. – 2003. – Т. 23, № 4. – С. 82-87.
  15. ↑ Clark P. E., Stein J. P., Groshen S. G., Cai Jie, Miranda G., Lieskovsky G., Skinner D. G. Radical Cystectomy in the Elderly: Comparison of Clinical Outcomes between Younger and Older Patient // Cancer, 2005, 104 (1). – P. 36-43. – DOI:10.1002/cncr.21126. – PMID 15912515.
  16. ↑ Manski, Dirk. Harnableitung nach Zystektomie. www.urologielehrbuch.de (23 октября 2015). Проверено 23 июня 2016.
  17. ↑ Костюк И. П., Васильев Л. А., Крестьянинов С. С. Классификация местно-распространённых новообразований малого таза и вторичного опухолевого поражения мочевого пузыря // Онкоурология. – 2014. – Т. 10, № 1. – С. 39-43. – DOI:10.17650/1726-9776-2014-10-1-39-43.
  18. ↑ Atala A., Bauer S. B., Soker S., Yoo J. J., Retik A. B. Tissue-engineered Autologous Bladders for Patients needing Cystoplasty // The Lancet, 2006, 367 (9518). – P. 1241-1246. – DOI:10.1016/S0140-6736(06)68438-9. – PMID 16631879.
  19. ↑ Alberti C. Whyever Bladder Tissue Engineering Clinical Applications Still Remain Unusual even though many Intriguing Technological Advances have been Reached? // Il Giornale di Chirurgia, 2016, 37 (1). – P. 6-12. – DOI:10.11138/gchir/2016.37.1.006. – PMID 27142819.

Литература

  • Гистология, цитология и эмбриология. 6-е изд / Под ред. Ю. И. Афанасьева, С. Л. Кузнецова, H. А. Юриной. – М.: Медицина, 2004. – 768 с. – ISBN 5-225-04858-7.
  • Дзержинский Ф. Я., Васильев Б. Д., Малахов В. В. Зоология позвоночных. 2-е изд. – М.: Издат. центр «Академия», 2014. – 464 с. – ISBN 978-5-4468-0459-7.
  • Константинов В. М., Наумов С. П., Шаталова С. П. Зоология позвоночных. 7-е изд. – М.: Издат. центр «Академия», 2012. – 448 с. – ISBN 978-5-7695-9293-5.
  • Сапин М. Р., Билич Г. Л. Анатомия человека: в 3-х тт. Т. 2. 3-е изд. – М.: ГЭОТАР-Медиа, 2009. – 496 с. – ISBN 978-5-9704-1373-9.

Источник

Читайте также:  Лейкоплакия мочевого пузыря после прижигания